
Lecture 25/26 : Integral Test for p-series and The Comparison test

In this section, we show how to use the integral test to decide whether a series of the form
∞∑

n=a

1

np
(where

a ≥ 1) converges or diverges by comparing it to an improper integral. Serioes of this type are called
p-series. We will in turn use our knowledge of p-series to determine whether other series converge or
not by making comparisons (much like we did with improper integrals).

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval [1,∞) with
f(n) = an. Then the series

∑∞
n=1 an is convergent if and only if

∫∞
1
f(x)dx converges, that is:

If

∫ ∞
1

f(x)dx is convergent, then
∞∑

n=1

an is convergent.

If

∫ ∞
1

f(x)dx is divergent, then
∞∑

n=1

an is divergent.

Note The result is still true if the condition that f(x) is decreasing on the interval [1,∞) is relaxed to
“the function f(x) is decreasing on an interval [M,∞) for some number M ≥ 1.”

We can get some idea of the proof from the following examples:

We know from our lecture on improper integrals that∫ ∞
1

1

xp
dx converges if p > 1 and diverges if p ≤ 1.

Example In the picture below, we compare the series
∑∞

n=1
1
n2 to the improper integral

∫∞
1

1
x2dx.

We see that

sn = 1 +
n∑

n=2

1

n2
< 1 +

∫ ∞
1

1

x2
dx = 1 + 1 = 2.

Since the sequence {sn} is increasing (because each an > 0) and bounded, we can conclude that the
sequence of partial sums converges and hence the series

∞∑
i=1

1

n2
converges.

NOTE We are not saying that
∑∞

i=1
1
n2 =

∫∞
1

1
x2dx here.
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Example In the picture below, we compare the series
∑∞

n=1
1√
n

to the improper integral
∫∞

1
1√
x
dx.

∞∑
k=1

1√
n

=
1√
1

+
1√
2

+
1√
3

+ · · ·

This time we draw the rectangles so that we get

sn > sn−1 =
1√
1

+
1√
2

+
1√
3

+ · · ·+ 1√
n− 1

>

∫ n

1

1√
x
dx

Thus we see that limn→∞ sn > limn→∞
∫ n

1
1√
x
dx. However, we know that

∫ n

1
1√
x
dx grows without bound

and hence since
∫∞

1
1√
x
dx diverges, we can conclude that

∑∞
k=1

1√
n

also diverges.

p-series

We can use the result quoted above from our section on improper integrals to prove the following result
on the p-series,

∑∞
i=1

1
np .

∞∑
n=1

1

np
converges for p > 1, diverges for p ≤ 1.

Example Determine if the following series converge or diverge:

∞∑
n=1

1
3
√
n
,

∞∑
n=1

n−15,
∞∑

n=10

n−15,
∞∑

n=100

1
5
√
n
,
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Comparison Test

As we did with improper integral, we can compare a series (with Positive terms) to a well known series
to determine if it converges or diverges.

We will of course make use of our knowledge of p-series and geometric series.

∞∑
n=1

1

np
converges for p > 1, diverges for p ≤ 1.

∞∑
n=1

arn−1 converges if |r| < 1, diverges if |r| ≥ 1.

Comparison Test Suppose that
∑
an and

∑
bn are series with positive terms.

(i) If
∑
bn is convergent and an ≤ bn for all n, than

∑
an is also convergent.

(ii) If
∑
bn is divergent and an ≥ bn for all n, then

∑
an is divergent.

Proof Let

sn =
n∑

i=1

ai, tn =
n∑

i=1

bi,

Proof of (i): Let us assume that
∑
bn is convergent and that an ≤ bn for all n. Both series have

positive terms, hence both sequences {sn} and {tn} are increasing. Since we are assuming that
∑∞

n=1 bn
converges, we know that there exists a t with t =

∑∞
n=1 bn. We have sn ≤ tn ≤ t for all n. Hence since

the sequence of partial sums for the series
∑∞

n=1 an is increasing and bounded above, it converges and
hence the series

∑∞
n=1 an converges.

Proof of (ii): Let us assume that
∑
bn is divergent and that an ≥ bn for all n. Since we are assuming

that
∑
bn diverges, we have the sequence of partial sums, {tn}, is increasing and unbounded. Hence

since we are assuming here that an ≥ bn for each n, we have sn ≥ tn for each n. Thus the sequence of
partial sums {sn} is unbounded and increasing and hence

∑
an diverges.
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Example Use the comparison test to determine if the following series converge or diverge:

∞∑
n=1

2−1/n

n3
,

∞∑
n=1

21/n

n
,

∞∑
n=1

1

n2 + 1
,

∞∑
n=1

n−2

2n
,

∞∑
n=1

lnn

n
,

∞∑
n=1

1

n!
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Limit Comparison Test Suppose that
∑
an and

∑
bn are series with positive terms. If

lim
n→∞

an

bn
= c

where c is a finite number and c > 0, then either both series converge or both diverge.

Proof Let m and M be numbers such that m < c < M . Then, because limn→∞
an

bn
= c, there is

an N for which m < an

bn
< M for all n > N . This means that

mbn < an < Mbn, when n > N.

Now we can use the comparison test from above to show that

If
∑
an converges, then

∑
mbn also converges. Hence 1

m

∑
mbn =

∑
bn converges.

On the other hand, if
∑
bn converges, then

∑
Mbn also converges and by comparison

∑
an

converges.

Example Test the following series for convergence using the Limit Comparison test:

∞∑
n=1

1

n2 − 1

∞∑
n=1

n2 + 2n+ 1

n4 + n2 + 2n+ 1
,

∞∑
n=1

2n+ 1√
n3 + 1

,
∞∑

n=1

e

2n − 1
,

∞∑
n=1

21/n

n2
,

∞∑
n=1

(
1 +

1

n

)3

3−n,
∞∑

n=1

sin
(π
n

)
.
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