Lecture 25/26 : Integral Test for p-series and The Comparison test

In this section, we show how to use the integral test to decide whether a series of the form $\sum_{n=a}^{\infty} \frac{1}{n^{p}}$ (where $a \geq 1$) converges or diverges by comparing it to an improper integral. Serioes of this type are called p-series. We will in turn use our knowledge of p-series to determine whether other series converge or not by making comparisons (much like we did with improper integrals).

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n)=a_{n}$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if $\int_{1}^{\infty} f(x) d x$ converges, that is:

$$
\begin{aligned}
& \text { If } \int_{1}^{\infty} f(x) d x \text { is convergent, then } \sum_{n=1}^{\infty} a_{n} \text { is convergent. } \\
& \text { If } \int_{1}^{\infty} f(x) d x \text { is divergent, then } \sum_{n=1}^{\infty} a_{n} \text { is divergent. }
\end{aligned}
$$

Note The result is still true if the condition that $f(x)$ is decreasing on the interval $[1, \infty)$ is relaxed to "the function $f(x)$ is decreasing on an interval $[M, \infty)$ for some number $M \geq 1$."
We can get some idea of the proof from the following examples:
We know from our lecture on improper integrals that

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x \text { converges if } p>1 \text { and diverges if } p \leq 1
$$

Example In the picture below, we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ to the improper integral $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

We see that

$$
s_{n}=1+\sum_{n=2}^{n} \frac{1}{n^{2}}<1+\int_{1}^{\infty} \frac{1}{x^{2}} d x=1+1=2
$$

Since the sequence $\left\{s_{n}\right\}$ is increasing (because each $a_{n}>0$) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$
\sum_{i=1}^{\infty} \frac{1}{n^{2}} \text { converges. }
$$

NOTE We are not saying that $\sum_{i=1}^{\infty} \frac{1}{n^{2}}=\int_{1}^{\infty} \frac{1}{x^{2}} d x$ here.

Example In the picture below, we compare the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ to the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$.

$$
\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots
$$

This time we draw the rectangles so that we get

$$
s_{n}>s_{n-1}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n-1}}>\int_{1}^{n} \frac{1}{\sqrt{x}} d x
$$

Thus we see that $\lim _{n \rightarrow \infty} s_{n}>\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{\sqrt{x}} d x$. However, we know that $\int_{1}^{n} \frac{1}{\sqrt{x}} d x$ grows without bound and hence since $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$ diverges, we can conclude that $\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}}$ also diverges.

p-series

We can use the result quoted above from our section on improper integrals to prove the following result on the p-series, $\sum_{i=1}^{\infty} \frac{1}{n^{p}}$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges for } p>1, \text { diverges for } p \leq 1
$$

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \quad \sum_{n=1}^{\infty} n^{-15}, \quad \sum_{n=10}^{\infty} n^{-15}, \quad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}}
$$

Comparison Test

As we did with improper integral, we can compare a series (with Positive terms) to a well known series to determine if it converges or diverges.

We will of course make use of our knowledge of p-series and geometric series.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges for } p>1, \text { diverges for } p \leq 1
$$

$$
\sum_{n=1}^{\infty} a r^{n-1} \text { converges if }|r|<1, \text { diverges if } \quad|r| \geq 1
$$

Comparison Test Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, than $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n , then $\sum a_{n}$ is divergent.

Proof Let

$$
s_{n}=\sum_{i=1}^{n} a_{i}, \quad t_{n}=\sum_{i=1}^{n} b_{i},
$$

Proof of (i): Let us assume that $\sum b_{n}$ is convergent and that $a_{n} \leq b_{n}$ for all n. Both series have positive terms, hence both sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are increasing. Since we are assuming that $\sum_{n=1}^{\infty} b_{n}$ converges, we know that there exists a t with $t=\sum_{n=1}^{\infty} b_{n}$. We have $s_{n} \leq t_{n} \leq t$ for all n. Hence since the sequence of partial sums for the series $\sum_{n=1}^{\infty} a_{n}$ is increasing and bounded above, it converges and hence the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Proof of (ii): Let us assume that $\sum b_{n}$ is divergent and that $a_{n} \geq b_{n}$ for all n. Since we are assuming that $\sum b_{n}$ diverges, we have the sequence of partial sums, $\left\{t_{n}\right\}$, is increasing and unbounded. Hence since we are assuming here that $a_{n} \geq b_{n}$ for each n, we have $s_{n} \geq t_{n}$ for each n. Thus the sequence of partial sums $\left\{s_{n}\right\}$ is unbounded and increasing and hence $\sum a_{n}$ diverges.

Example Use the comparison test to determine if the following series converge or diverge:

$$
\begin{array}{rlr}
\sum_{n=1}^{\infty} \frac{2^{-1 / n}}{n^{3}}, & \sum_{n=1}^{\infty} \frac{2^{1 / n}}{n}, & \sum_{n=1}^{\infty} \frac{1}{n^{2}+1}, \\
\sum_{n=1}^{\infty} \frac{n^{-2}}{2^{n}}, & \sum_{n=1}^{\infty} \frac{\ln n}{n}, & \sum_{n=1}^{\infty} \frac{1}{n!}
\end{array}
$$

Limit Comparison Test Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.
Proof Let m and M be numbers such that $m<c<M$. Then, because $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, there is an N for which $m<\frac{a_{n}}{b_{n}}<M$ for all $n>N$. This means that

$$
m b_{n}<a_{n}<M b_{n}, \quad \text { when } n>N .
$$

Now we can use the comparison test from above to show that
If $\sum a_{n}$ converges, then $\sum m b_{n}$ also converges. Hence $\frac{1}{m} \sum m b_{n}=\sum b_{n}$ converges.
On the other hand, if $\sum b_{n}$ converges, then $\sum M b_{n} \quad$ also converges and by comparison $\sum a_{n}$ converges.
Example Test the following series for convergence using the Limit Comparison test:

$$
\begin{array}{cc}
\sum_{n=1}^{\infty} \frac{1}{n^{2}-1} & \sum_{n=1}^{\infty} \frac{n^{2}+2 n+1}{n^{4}+n^{2}+2 n+1}, \quad \sum_{n=1}^{\infty} \frac{2 n+1}{\sqrt{n^{3}+1}}, \quad \sum_{n=1}^{\infty} \frac{e}{2^{n}-1}, \\
\sum_{n=1}^{\infty} \frac{2^{1 / n}}{n^{2}}, & \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{3} 3^{-n}, \quad \sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n}\right) .
\end{array}
$$

